Tool Integration in Software Engineering Environments

M.N. Wicks
Department of Computer Science,
School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh, EH14 4AS, UK
Tel: +44 (0)131 451 3221

mnwl@macs.hw.ac.uk

ABSTRACT

This article presents doctoral research on tooégrtion

within software engineering environments. Toolegration

concerns the techniques used to form coalition®ols that
provide an environment supporting some, or alljviigs

within the software engineering process. Someréstag

phenomena have been observed, such as the ad tuoe of
tool integration in one particular software engineg

company. This observation is at variance to the naom
perception of widespread integration suggested ogl t
vendors and some previous academic literaturetiallmesults

suggest that integration must be implemented foin®ass
reasons, not for its own sake.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques
- Computer-aided software engineering (CASE); D.2.6
[Software Engineering]: Programming Environments -
Integrated environments; D.2.9 [Software Engineering]:
Management Life cycle; Software process models;

General Terms
Management, Measurement, Economics.

Keywords
Software Engineering, Software Engineering Envirents,
Software Tools, Tool Integration.

1. INTRODUCTION

The practical application of software developmerdthods

through the use of appropriate tools is often sonaw
different to the original overall theoretical intem of the

method. The integration of tools within a softwargineering
organisation is no different, as the practicalisagion is often

orthogonal to the suggested theoretical panacea.inBtance,
a desire to increase productivity to match evereasing

competition, curtails the freedom of an organizatio choose
its own style, method and pace of software devetpm
Therefore the software process, and hence its stipgo
coalitions of tools, must be suitably modified andnaged to
maintain business advantage, and yet preserve tiguel

selling point of that organisation’s products.

This paper briefly discusses a research effort Hiats to
discover more about the nature of tools used wituftware
engineering environments, and how best they shded
integrated to maximize possible productivity anélgy gains
for the organization. First the most significamiop research
works are discussed to describe the state of theTdren the
main questions that this particular research effodattempting
to address are discussed. Following on from thgpetheses,
the choice of method for this work is discussedextNthe
initial outputs and data collected from the chos®thod are
presented. A brief critique of the chosen mettodiscussed
together with some initial results. Finally, theykinitial
findings are recapitulated, and are presented tiegewith a
plan for the future work required to complete asthe

2. THE STATE OF THE ART

Tool integration has been an active research arealfost
two decades, as described in [7]. Two seminal wdHat
demand particular discussion are Wasserman [6]Ezamtl[3].

Earl suggested the “Toaster” Reference model foEEA 0ol

environments, whilst Wasserman proposed five diioess
that could be used to measure tool integration.

Earl's model put forward a common environment tigtou
which tools would be used. Common front-end ses/iwould

be combined with back end data management fasilitie
mediated by a messaging network, into which toolsid be
slotted; like slices of bread in a toaster. THhadstructure
required all tools to be compliant with the framekvdy
building them to a common standard. However, $higgested
solution also precluded the use of tools outside thuf
framework.

Wasserman proposed a method for measuring the coalityo
between environments. He suggested five degrees, o
“dimensions”, that could provide a scale againstictvh
comparisons could be made. These dimensions ktgorm
integration describing the physical environment tha system
runs on; presentation integration describing ther ursterface
metaphor employed; data integration concerningleiel of
sophistication of the shared data structures; obiritegration
concerned with the level of interoperability betwehe tools;
and finally process integration that describedelel to which
a particular software methodology can be reified.

All subsequent works in this area are built on ¢héso
seminal contributions, with a tendency for researshto
classify and clarify the levels of integration irandidate
environments, for example, see the work detailefL]n[2],
[4], [5] and [8]. A thorough review of previoussearch has
already been carried out [7], and this analysishligbts
several interesting ideas about tool integrationsaftware
engineering environments. This review also shdves that

www.manaraa.com

following a burst of activity in the early 1990sork tailed off
somewhat, only to re-emerge as a significant rebetpic in
recent years. This review also highlights a wargyiendency
where these more recent efforts do not considersémainal
efforts of Wasserman, Earl and others; so muclhabthere is
a danger that there will be no new lessons andgtitsi with
work merely being repeated.

A new research agenda for tool integration in safew
engineering environments is proposed; one that esdrates
on the reasons for considering any integrated ismlutithin

an organisation. Among the key issues that aretiftkd is

the need to combat the urge to compare tools utieq

features only, for which the term “feature-itis"ncée used.
The contemporary work that has been reviewed, shbas
efforts are continuing to create yet more solutiaager Earl,
rather than following the investigative path thatderman
took. The review [7] suggests that experience, ibe
organisational or personal, is a paramount factoselecting
tools and integrating them, and that investigatishsuld be
conducted into the motivation for integration ratiiean just
propounding yet another architecture or model. t&oporary
research into tool integration has so far avoidedirtess
realities when software engineering environmengscaeated.
For example, there is a need to focus on key istuemy

organisation such as productivity gains and Ret@n

Investment (ROI) that an integrated solution shquitvide.

3. HYPOTHESES

From the review [7] and its conclusions outlinedbhedy a
number of hypotheses emerge: the first hypothesisiders
the relationship between the sustainability and
sophistication of any integrated tool solution,d&scribed in
Figure 1; the second hypothesis considers theige&itip
between the net value of an integrated tool satytégainst the
sophistication of that solution, as described iguFé 2; the
final hypothesis considers the relationship betwebe
sophistication of an integrated tool solution ahne time taken
to reach such a level of sophistication, as desdrib Figure
3.

The hypothesis demonstrated by Figure 1 conteratssiimple,
focused integration solutions last longer than more
complicated ones, perhaps since increasingly comple
solutions run the risk of early obsolescence. iffy@ications

of this suggestion are of interest to those plagmvestment

in tools and services to develop software, as ilcccuggest
that expensive, sophisticated solutions are tovioédad. As
the sophistication of a tool integration solutioereases, there
is an implication that more activities within theftsvare
lifecycle would be covered by the resulting solatidSo if few
activities are integrated into a solution, will ghthen last
longer (and so provide a better ROI) than furthégnapts to
integrate yet more activities?

the

The hypothesis demonstrated by Figure 2 suggestdhtare is
an optimum derived “value” that can be achievedubing a
particular integrated set of tools. This also ingdications for
the planning of investments in new or improved tool
coalitions, as it suggests that there may be al lee
investment beyond which there would be little point
investments to increase the sophistication of tio@gsed tool

coalition. Again this might also suggest that ¢henay be
differing levels of sophistication of tool integiat between
differing software activities within the softwarietycle, and
that these differing combinations of sophisticatioay result
in an optimal return, be it in terms of productjvdr quality to
the organization.

The final hypothesis demonstrated by Figure 3 culgethat
there is a relationship between the sophisticatioh
integration, used in any tool coalition, and tim8imply put,
the level of integration sophistication betweenlsdacreases
over time, as the utilising organization gains epee of a
set of tools, and learns how best to adapt thematezh their
own particular business processes, models andsethic

Sophistication
(Functionality)

Sustainability (Longevity)

Figurel Sophistication vs. Sustainability

Optimum
Value/Integration Level
for a given Software

Process?
Net

“Value”

Integration Sophistication

Figure2 Net “Value” vs. Sophistication

Optimal Tool Integration
Level for Maximum
Possible Derived Value
Tool
Integration
Sophistication

Time / Organisational Experience

Figure 3 Sophistication over Time

www.manaraa.com

4. APPROACH

In order to explore these wide ranging hypotheses,
collaboration was formed between Heriot-Watt Ursigrand
a software company in Scotland that produces alesing
integrated suite of programs for the telecommuiooatsector.
The collaboration coincided with the company emlmaylon a
process improvement programme with the goal ofuiegra
significant productivity benefit. Initially the ogpany wanted
to establish a baseline from which subsequent ptodty
gains could be identified and measured; in paiiguthose
accruing from the adoption of the Rational suitetadls, a
strategic decision by the company, soon to be naaddable
to all development teams. At this stage the compeamts to
remain anonymous until results of significance eyaer The
company are aiming for a 25% productivity improvetnever
a two year period, which they hoped would accrusmfr
adoption the Rational suite.

The work started by holding a series of semi-stmext

interviews with representatives from all the depahent teams
in the company. During preliminary planning megsirwith

the champion of the Rational project, the design thud

interview was significantly tailored to the culturand

terminology of the collaborating organisation, imder to

remove multiple explanations of the same term irergv
interview, for example, the names of the lifecyplteases used
in a project or single block of work (as shown asrdhe X

axis in Figure 4, being: Project Management; Resménts
Management; Analysis & Design; Implementation; Tregst

Defect Tracking & Change Control; and finally Canfration

Management).

The interview comprised three sections; generaffwaoe
process and tool integration characteristics. @#ngam
characteristics were collected first. These inetlichdividual
and collective roles and responsibilities, teame siand
composition (numbers of project managers, archstect
developers and testers), granularity and timinghefplanned
work, programming languages used, the proportiortimé
devoted to maintenance and to development workyedisas
the teams’ methodological approaches. Next thendbty of
the software process for each lifecycle activitysweatablished,
together with the specific tools used, whether mejrics were
collected or used, whether any tools were intedrate
subjective statement of effectiveness of the teameach
activity and a statement of the effectiveness eftthols used.
Finally, the interviewees were asked to identifpg@xamples
of tool integration they knew of in the organisatiand to
identify any areas that would benefit from integhtools that
are poorly supported at present.

Eleven interviews were conducted with fourteen peop
attending, covering eleven teams responsible fdotal of
seventeen projects within the company. Each irgerlasted
no more than an hour without any tape recordirthatequest
of the company, so only notes were taken.

5. PRELIMINARY RESULTS

The interview notes were analysed and, where plessib
transformed into graphical formats. For instanEgure 4
illustrates the frequency of tool integration withieach
lifecycle activity. “Yes” indicates that fully aomated

integration exists within this activity, “No” indites no
integration whatsoever, “Some” indicates informekgration
only, and “Not Applicable” means that the activity not
performed by that team. In this case, the compaaytools to
address both defect tracking and configuration meament
that were very well integrated, thus enabling redsa of
software to be created that included all the rexliiixes to
identified defects. In other words, one tool int&gm instance
spanned more than one lifecycle activity; reflecitedhe two
largest “Yes” peaks that can be seen in Figure 4.

12

10

8

i

Project
Management

Count of Teams

Analysis &
Design

Testing Defect Tracking ~ Configuration
& Change Management

Control

Management

Activity

‘D Yes B No O Some [Not Applicable‘

Figure4 Tool Integration across Lifecycle Activities

From Figure 4, it can be seen that integrationois uniform
across the lifecycle. The degree of fully automatol
integration has only been achieved between twwities, with

a few instances of manual integration elsewherggesting
that automatic integration may be a rare phenomenoa
practical industrial setting. By manual integrativze mean the
use of “cut and paste” between commodity software
applications, for example those within MicrosoftiCe.

6. EVALUATION

These initial results provide evidence that intégrais not
uniform across the whole of an organisation’s safew
process, such that it could be said that only fid&a of
Integration” exist. Not only this, but the wholeftsvare
process is not uniformly defined equally well asroall
lifecycle activities. Fully automatic tool integi@n only
occurs when a decision is taken to reify an agesetidefined
software process. In this instance, the integnatsobetween
the Defect Tracking & Change Control and the Camfigion
Management activities, and this was driven by ecqieed
inability to deliver to customers the required aaite,
containing only those components relevant to a iipec
release. Thus, the driver was the desire to gadisgpecific,
customer facing business goal. This result wasimtally
suggested by any of the previously mentioned hygsish but
it does emphasise the importance of business fadtothe
selection or adoption of a particular level of taalegration
sophistication.

At the moment all of these initial results are extdal and
subjective, so support from further objective meesuis
required. These objective measures need to desprifject
characteristics such as size, longevity, or conifyleas well as
describing staff skill levels. Therefore, no défire
conclusions can yet be reached, and work is ongoing
However, these useful insights provide encouragénfien

www.manaraa.com

further investigations into the hypotheses suggegsteviously
in Figures 1, 2 and 3, because the observed toedration
phenomenon has been realised by a simple tightinete
process exercised by automatic integration. Oturéuwork
will include conducting a similar exercise with dmer
company to provide corroboration of these initintifngs, and
to repeat the same exercise in a years time wihotiginal
company in order to measure the effect of the thtotion of
the Rational suite across all teams. This futwerase will
also provide a useful temporal dimension to thisda

Also of note here are questions relating to the@mateness
of the method chosen. This raised a number oésssace the
interviews were under way, as it soon became apptrat not
every question was going to have an answer, soingiss
answers often resulted. For example, if a tearfect®ld no
metrics within a particular activity, then the fall up question
that attempts to determine when the collection aftrivs
started is not asked. Similarly, it also becanaagnt that not
all questions were relevant to everybody, so wtsdetions
could sometimes be omitted. For example, askiegrtanager
of the maintenance team that solely implements fixes
about his Analysis and Design process was fairlintess.
This suggests that the design of any interview ggsenust be
sufficiently flexible to cope with a wide enoughnge of
possible answers, and yet maintain sufficient foeithin the
particular set of constraints posed by the orgainisaunder
investigation. This will have knock on consequennoghen
the investigation is repeated with other organisesi

7. CONCLUSIONS

In this summary paper, research into tool integratias been
presented and discussed, with particular referémce single
software engineering company. Some backgroundvat@ins
to our work have been discussed, and these sudiast
researchers are in danger of falling into the whpnswering
old questions, which have little to do with currdnisiness
concerns or the practical application of tools tmduce
software. These new questions must relate to bssin
priorities and goals, and not merely to exercisehneal
issues. To this end, business is increasingly evedrthe
investment required to support the developmentoftfvgire,
such that the need to justify the time and moneyired to
create sophisticated software engineering enviromsnds
paramount, as well as needing to calculate someatidn of
when this investment will start generating a return

A series of semi-structured interviews has beendcoted
across a single company, from which an initial gfetesults
has been produced. From these results, it capdretbat tool
integration is not a uniform phenomena across tifevare
lifecycle, instead “Islands of Integration” exist. These
“Islands” have been created to answer a custonca@rga
deficiency, and not a theoretical need to satisiyes abstract
software standard, process model or technical issue

This paper demonstrates the surprising observétianat least
one successful company is not concerned with perddbest

industrial practice, as exercised through a soighisgtd set of
tools integrated throughout the development lifézybut is
rather more concerned with addressing immediatgnpaiic
imperatives.

The rest of the work required to produce a thesi@ly for
submission will start with an industry-wide onliservey in

Scotland. Comparative data will be extracted inirailar

fashion from at least two other organizations, togewith a
return to the original organization after one y&aprovide a
temporal dimension. The goal is then to draft edptive

model, or at least the first steps towards suclodatn that will

assist organisations in their selection of toold how best to
create coalitions that optimize their work methopiycesses
and ethics.

8. ACKNOWLEDGEMENTS

M N Wicks is financially supported by Heriot-Watniersity
throughout the course of his studies for his Datrin
Computer Science.

9. REFERENCES

[1] Amsden, J. Levels of Integration. Object Technology
International, 2001.
(http://www.eclipse.org/articles/Article-Levels-Of-
Integration/Levels Of Integration.html), [last assed
11/3/05].

[2] Brown, AW. Control integration through message-
passing in a software development environmgaftware
Engineering Journal 8(3): 1993, 121-131.

[3] Earl, A. Principles of a reference model for congpout
aided software engineering environmentsPaceedings
of The International Workshop on Environments
(Software Engineering Environments), LNCS 647,
Springer, 1989, 115-129.

[4] Rader, J., Morris, E.J. and Brown, A.W. An invesatign
into the state-of-the-practice of CASE tool intégma. In
Proceedings of the Software Engineering Environments
Conference, 1993, 209-221.

[5] Thomas, I. and Nejmeh, B. A. Definitions of tool
integration for environment$EEE Software 9(2), 1992,
29-35.

[6] Wasserman, A.l. Tool integration in software engiirgy
environments. IrProceedings of the International
Workshop on Environments (Software Engineering
Environments), LNCS 647, Springer, 1989, 137-149.

[7] Wicks, M.N.Tool integration in software engineering:
The state of the art in 2004. Technical Report HW-
MACS-TR-0021, Heriot-Watt Institute of Software
Engineering, 2004.

[8] Yang, Y. and Han, J. Classification of and
experimentation on tool interfacing in software
development environments. Rroceedings of the (Asia-
Pacific) Software Engineering Conference, 1996, 56-65.

www.manaraa.com

