
www.manaraa.com

Tool Integration in Software Engineering Environments
M.N. Wicks

Department of Computer Science,
School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh, EH14 4AS, UK

Tel: +44 (0)131 451 3221

mnw1@macs.hw.ac.uk

ABSTRACT
This article presents doctoral research on tool integration
within software engineering environments. Tool integration
concerns the techniques used to form coalitions of tools that
provide an environment supporting some, or all, activities
within the software engineering process. Some interesting
phenomena have been observed, such as the ad hoc nature of
tool integration in one particular software engineering
company. This observation is at variance to the common
perception of widespread integration suggested by tool
vendors and some previous academic literature. Initial results
suggest that integration must be implemented for business
reasons, not for its own sake.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques
- Computer-aided software engineering (CASE); D.2.6
[Software Engineering]: Programming Environments -
Integrated environments; D.2.9 [Software Engineering]:
Management - Life cycle; Software process models;

General Terms
Management, Measurement, Economics.

Keywords
Software Engineering, Software Engineering Environments,
Software Tools, Tool Integration.

1. INTRODUCTION
The practical application of software development methods
through the use of appropriate tools is often somewhat
different to the original overall theoretical intention of the
method. The integration of tools within a software engineering
organisation is no different, as the practical realisation is often
orthogonal to the suggested theoretical panacea. For instance,
a desire to increase productivity to match ever increasing
competition, curtails the freedom of an organization to choose
its own style, method and pace of software development.
Therefore the software process, and hence its supporting
coalitions of tools, must be suitably modified and managed to
maintain business advantage, and yet preserve the unique
selling point of that organisation’s products.

This paper briefly discusses a research effort that aims to
discover more about the nature of tools used within software
engineering environments, and how best they should be
integrated to maximize possible productivity and quality gains
for the organization. First the most significant prior research
works are discussed to describe the state of the art. Then the
main questions that this particular research effort is attempting
to address are discussed. Following on from these hypotheses,
the choice of method for this work is discussed. Next the
initial outputs and data collected from the chosen method are
presented. A brief critique of the chosen method is discussed
together with some initial results. Finally, the key initial
findings are recapitulated, and are presented together with a
plan for the future work required to complete a thesis.

2. THE STATE OF THE ART
Tool integration has been an active research area for almost
two decades, as described in [7]. Two seminal works that
demand particular discussion are Wasserman [6] and Earl [3].
Earl suggested the “Toaster” Reference model for CASE Tool
environments, whilst Wasserman proposed five dimensions
that could be used to measure tool integration.

Earl’s model put forward a common environment through
which tools would be used. Common front-end services would
be combined with back end data management facilities
mediated by a messaging network, into which tools could be
slotted; like slices of bread in a toaster. This infrastructure
required all tools to be compliant with the framework by
building them to a common standard. However, this suggested
solution also precluded the use of tools outside of the
framework.

Wasserman proposed a method for measuring the commonality
between environments. He suggested five degrees, or
“dimensions”, that could provide a scale against which
comparisons could be made. These dimensions are: platform
integration describing the physical environment that the system
runs on; presentation integration describing the user interface
metaphor employed; data integration concerning the level of
sophistication of the shared data structures; control integration
concerned with the level of interoperability between the tools;
and finally process integration that describes the level to which
a particular software methodology can be reified.

All subsequent works in this area are built on these two
seminal contributions, with a tendency for researchers to
classify and clarify the levels of integration in candidate
environments, for example, see the work detailed in [1], [2],
[4], [5] and [8]. A thorough review of previous research has
already been carried out [7], and this analysis highlights
several interesting ideas about tool integration in software
engineering environments. This review also shows that that

www.manaraa.com

following a burst of activity in the early 1990s, work tailed off
somewhat, only to re-emerge as a significant research topic in
recent years. This review also highlights a worrying tendency
where these more recent efforts do not consider the seminal
efforts of Wasserman, Earl and others; so much so that there is
a danger that there will be no new lessons and insights, with
work merely being repeated.

A new research agenda for tool integration in software
engineering environments is proposed; one that concentrates
on the reasons for considering any integrated solution within
an organisation. Among the key issues that are identified is
the need to combat the urge to compare tools using their
features only, for which the term “feature-itis” can be used.
The contemporary work that has been reviewed, shows that
efforts are continuing to create yet more solutions as per Earl,
rather than following the investigative path that Wasserman
took. The review [7] suggests that experience, be it
organisational or personal, is a paramount factor in selecting
tools and integrating them, and that investigations should be
conducted into the motivation for integration rather than just
propounding yet another architecture or model. Contemporary
research into tool integration has so far avoided business
realities when software engineering environments are created.
For example, there is a need to focus on key issues to any
organisation such as productivity gains and Return On
Investment (ROI) that an integrated solution should provide.

3. HYPOTHESES
From the review [7] and its conclusions outlined above, a
number of hypotheses emerge: the first hypothesis considers
the relationship between the sustainability and the
sophistication of any integrated tool solution, as described in
Figure 1; the second hypothesis considers the relationship
between the net value of an integrated tool solution, against the
sophistication of that solution, as described in Figure 2; the
final hypothesis considers the relationship between the
sophistication of an integrated tool solution and the time taken
to reach such a level of sophistication, as described in Figure
3.

The hypothesis demonstrated by Figure 1 contends that simple,
focused integration solutions last longer than more
complicated ones, perhaps since increasingly complex
solutions run the risk of early obsolescence. The implications
of this suggestion are of interest to those planning investment
in tools and services to develop software, as it could suggest
that expensive, sophisticated solutions are to be avoided. As
the sophistication of a tool integration solution increases, there
is an implication that more activities within the software
lifecycle would be covered by the resulting solution. So if few
activities are integrated into a solution, will this then last
longer (and so provide a better ROI) than further attempts to
integrate yet more activities?

The hypothesis demonstrated by Figure 2 suggests that there is
an optimum derived “value” that can be achieved by using a
particular integrated set of tools. This also has implications for
the planning of investments in new or improved tool
coalitions, as it suggests that there may be a level of
investment beyond which there would be little point in
investments to increase the sophistication of the proposed tool

coalition. Again this might also suggest that there may be
differing levels of sophistication of tool integration between
differing software activities within the software lifecycle, and
that these differing combinations of sophistication may result
in an optimal return, be it in terms of productivity or quality to
the organization.

The final hypothesis demonstrated by Figure 3 contends that
there is a relationship between the sophistication of
integration, used in any tool coalition, and time. Simply put,
the level of integration sophistication between tools increases
over time, as the utilising organization gains experience of a
set of tools, and learns how best to adapt them to match their
own particular business processes, models and ethics.

Sustainability (Longevity)

Sophistication
(Functionality)

Figure 1 Sophistication vs. Sustainability

Net
“Value”

Integration Sophistication

Optimum
Value/Integration Level
for a given Software
Process?

Figure 2 Net “Value” vs. Sophistication

Tool
Integration
Sophistication

Time / Organisational Experience

Optimal Tool Integration
Level for Maximum
Possible Derived Value

Figure 3 Sophistication over Time

www.manaraa.com

4. APPROACH
In order to explore these wide ranging hypotheses, a
collaboration was formed between Heriot-Watt University and
a software company in Scotland that produces a single
integrated suite of programs for the telecommunications sector.
The collaboration coincided with the company embarking on a
process improvement programme with the goal of accruing a
significant productivity benefit. Initially the company wanted
to establish a baseline from which subsequent productivity
gains could be identified and measured; in particular, those
accruing from the adoption of the Rational suite of tools, a
strategic decision by the company, soon to be made available
to all development teams. At this stage the company wants to
remain anonymous until results of significance emerge. The
company are aiming for a 25% productivity improvement over
a two year period, which they hoped would accrue from
adoption the Rational suite.

The work started by holding a series of semi-structured
interviews with representatives from all the development teams
in the company. During preliminary planning meetings with
the champion of the Rational project, the design of the
interview was significantly tailored to the culture and
terminology of the collaborating organisation, in order to
remove multiple explanations of the same term in every
interview, for example, the names of the lifecycle phases used
in a project or single block of work (as shown across the X
axis in Figure 4, being: Project Management; Requirements
Management; Analysis & Design; Implementation; Testing;
Defect Tracking & Change Control; and finally Configuration
Management).

The interview comprised three sections; general, software
process and tool integration characteristics. General team
characteristics were collected first. These included individual
and collective roles and responsibilities, team size and
composition (numbers of project managers, architects,
developers and testers), granularity and timing of the planned
work, programming languages used, the proportion of time
devoted to maintenance and to development work, as well as
the teams’ methodological approaches. Next the formality of
the software process for each lifecycle activity was established,
together with the specific tools used, whether any metrics were
collected or used, whether any tools were integrated, a
subjective statement of effectiveness of the team at each
activity and a statement of the effectiveness of the tools used.
Finally, the interviewees were asked to identify good examples
of tool integration they knew of in the organisation, and to
identify any areas that would benefit from integrated tools that
are poorly supported at present.

Eleven interviews were conducted with fourteen people
attending, covering eleven teams responsible for a total of
seventeen projects within the company. Each interview lasted
no more than an hour without any tape recording at the request
of the company, so only notes were taken.

5. PRELIMINARY RESULTS
The interview notes were analysed and, where possible,
transformed into graphical formats. For instance, Figure 4
illustrates the frequency of tool integration within each
lifecycle activity. “Yes” indicates that fully automated

integration exists within this activity, “No” indicates no
integration whatsoever, “Some” indicates informal integration
only, and “Not Applicable” means that the activity is not
performed by that team. In this case, the company had tools to
address both defect tracking and configuration management
that were very well integrated, thus enabling releases of
software to be created that included all the required fixes to
identified defects. In other words, one tool integration instance
spanned more than one lifecycle activity; reflected in the two
largest “Yes” peaks that can be seen in Figure 4.

0

2

4

6

8

10

12

Project
Management

Requirements
Management

Analysis &
Design

Implementation Testing Defect Tracking
& Change

Control

Configuration
Management

Activity
C

o
u

n
t

o
f

T
ea

m
s

Yes No Some Not Applicable

Figure 4 Tool Integration across Lifecycle Activities

From Figure 4, it can be seen that integration is not uniform
across the lifecycle. The degree of fully automatic tool
integration has only been achieved between two activities, with
a few instances of manual integration elsewhere, suggesting
that automatic integration may be a rare phenomenon in a
practical industrial setting. By manual integration we mean the
use of “cut and paste” between commodity software
applications, for example those within Microsoft Office.

6. EVALUATION
These initial results provide evidence that integration is not
uniform across the whole of an organisation’s software
process, such that it could be said that only “Islands of
Integration” exist. Not only this, but the whole software
process is not uniformly defined equally well across all
lifecycle activities. Fully automatic tool integration only
occurs when a decision is taken to reify an agreed and defined
software process. In this instance, the integration is between
the Defect Tracking & Change Control and the Configuration
Management activities, and this was driven by a perceived
inability to deliver to customers the required software,
containing only those components relevant to a specific
release. Thus, the driver was the desire to satisfy a specific,
customer facing business goal. This result was not initially
suggested by any of the previously mentioned hypothesis, but
it does emphasise the importance of business factors to the
selection or adoption of a particular level of tool integration
sophistication.

At the moment all of these initial results are contextual and
subjective, so support from further objective measures is
required. These objective measures need to describe project
characteristics such as size, longevity, or complexity, as well as
describing staff skill levels. Therefore, no definitive
conclusions can yet be reached, and work is ongoing.
However, these useful insights provide encouragement for

www.manaraa.com

further investigations into the hypotheses suggested previously
in Figures 1, 2 and 3, because the observed tool integration
phenomenon has been realised by a simple tightly defined
process exercised by automatic integration. Our future work
will include conducting a similar exercise with another
company to provide corroboration of these initial findings, and
to repeat the same exercise in a years time with the original
company in order to measure the effect of the introduction of
the Rational suite across all teams. This future exercise will
also provide a useful temporal dimension to this data.

Also of note here are questions relating to the appropriateness
of the method chosen. This raised a number of issues once the
interviews were under way, as it soon became apparent that not
every question was going to have an answer, so missing
answers often resulted. For example, if a team collected no
metrics within a particular activity, then the follow up question
that attempts to determine when the collection of metrics
started is not asked. Similarly, it also became apparent that not
all questions were relevant to everybody, so whole sections
could sometimes be omitted. For example, asking the manager
of the maintenance team that solely implements bug fixes
about his Analysis and Design process was fairly pointless.
This suggests that the design of any interview process must be
sufficiently flexible to cope with a wide enough range of
possible answers, and yet maintain sufficient focus within the
particular set of constraints posed by the organisation under
investigation. This will have knock on consequences, when
the investigation is repeated with other organisations.

7. CONCLUSIONS
In this summary paper, research into tool integration has been
presented and discussed, with particular reference to a single
software engineering company. Some background motivations
to our work have been discussed, and these suggest that
researchers are in danger of falling into the trap of answering
old questions, which have little to do with current business
concerns or the practical application of tools to produce
software. These new questions must relate to business
priorities and goals, and not merely to exercise technical
issues. To this end, business is increasingly aware of the
investment required to support the development of software,
such that the need to justify the time and money required to
create sophisticated software engineering environments is
paramount, as well as needing to calculate some indication of
when this investment will start generating a return.

A series of semi-structured interviews has been conducted
across a single company, from which an initial set of results
has been produced. From these results, it can be seen that tool
integration is not a uniform phenomena across the software
lifecycle, instead “Islands of Integration” exist. These
“Islands” have been created to answer a customer-facing
deficiency, and not a theoretical need to satisfy some abstract
software standard, process model or technical issue.

This paper demonstrates the surprising observation that at least
one successful company is not concerned with perceived best

industrial practice, as exercised through a sophisticated set of
tools integrated throughout the development lifecycle, but is
rather more concerned with addressing immediate pragmatic
imperatives.

The rest of the work required to produce a thesis ready for
submission will start with an industry-wide online survey in
Scotland. Comparative data will be extracted in a similar
fashion from at least two other organizations, together with a
return to the original organization after one year to provide a
temporal dimension. The goal is then to draft a predictive
model, or at least the first steps towards such a model, that will
assist organisations in their selection of tools and how best to
create coalitions that optimize their work methods, processes
and ethics.

8. ACKNOWLEDGEMENTS
M N Wicks is financially supported by Heriot-Watt University
throughout the course of his studies for his Doctorate in
Computer Science.

9. REFERENCES
[1] Amsden, J. Levels of Integration. Object Technology

International, 2001.
(http://www.eclipse.org/articles/Article-Levels-Of-
Integration/Levels Of Integration.html), [last accessed
11/3/05].

[2] Brown, A.W. Control integration through message-
passing in a software development environment. Software
Engineering Journal 8(3): 1993, 121-131.

[3] Earl, A. Principles of a reference model for computer
aided software engineering environments. In Proceedings
of The International Workshop on Environments
(Software Engineering Environments), LNCS 647,
Springer, 1989, 115-129.

[4] Rader, J., Morris, E.J. and Brown, A.W. An investigation
into the state-of-the-practice of CASE tool integration. In
Proceedings of the Software Engineering Environments
Conference, 1993, 209-221.

[5] Thomas, I. and Nejmeh, B. A. Definitions of tool
integration for environments. IEEE Software 9(2), 1992,
29-35.

[6] Wasserman, A.I. Tool integration in software engineering
environments. In Proceedings of the International
Workshop on Environments (Software Engineering
Environments), LNCS 647, Springer, 1989, 137-149.

[7] Wicks, M.N. Tool integration in software engineering:
The state of the art in 2004. Technical Report HW-
MACS-TR-0021, Heriot-Watt Institute of Software
Engineering, 2004.

[8] Yang, Y. and Han, J. Classification of and
experimentation on tool interfacing in software
development environments. In Proceedings of the (Asia-
Pacific) Software Engineering Conference, 1996, 56-65.

